Cost Sensitive Time-Series Classification
نویسندگان
چکیده
Introduction: One of the key sources of performance degradation in the field of time-series classification is the class imbalance problem. In real-world datasets, the minority class (Positive class) is outnumbered by abundant majority (negative) class instances. Objective: Develop a cost-sensitive time-series classification framework. Challenge 1: Minimum classification error criterion (e.g 0-1 loss function) based classification models generate biased models towards the majority class causing higher misclassification error for minority class examples (important class). Solution: Use differentially weighted loss function having variable misclassification cost for false positive and false negative errors. Challenge 2: Predetermination of misclassification cost values from domain experts. Solution: Estimating misclassification cost from data. Challenge 3: Interpretable Model. Solution: Learning interpretable temporal patterns (shapelets) for time-series classification.
منابع مشابه
Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملCost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification
Some deep convolutional neural networks were proposed for time-series classification and class imbalanced problems. However, those models performed degraded and even failed to recognize the minority class of an imbalanced temporal sequences dataset. Minority samples would bring troubles for temporal deep learning classifiers due to the equal treatments of majority and minority class. Until rece...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل